If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200p-0.5p^2=400
We move all terms to the left:
200p-0.5p^2-(400)=0
a = -0.5; b = 200; c = -400;
Δ = b2-4ac
Δ = 2002-4·(-0.5)·(-400)
Δ = 39200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39200}=\sqrt{19600*2}=\sqrt{19600}*\sqrt{2}=140\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-140\sqrt{2}}{2*-0.5}=\frac{-200-140\sqrt{2}}{-1} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+140\sqrt{2}}{2*-0.5}=\frac{-200+140\sqrt{2}}{-1} $
| -6x-42=-6 | | 5x-8=19+2x | | 3t+8=60 | | 5(0,2x+3,5)-2=2(x+6,25) | | 2x-2+3x=4x+8 | | 10v+v=1 | | 3x=7x+11 | | 4(x-3)=3(1-2x) | | 2(x+6)+4x=24 | | 2x+1=0x+4 | | 2-7(n+7)=n+1 | | -100=3(1-4a)-7 | | 8z-22=9z+33-2 | | x3+3x-150=0 | | 7(2x-3=12x-5 | | 5x+3.50=19 | | m/2-21=-18 | | 9=-6x+3(x+4) | | 2(x+3)=-2(x+1)+4 | | 18+2=-5(8x-4) | | 4v-2-3=25 | | 2+4v=-7=v | | 1-5x=-7-4x | | 4p-8p=5-5p | | z^2+12z+38=0 | | 8=45/x | | 5/9=30/n | | 5n+4n=4+8+n+5n | | 30x=10(8-x) | | -17=n-3+n | | -8=7x-3x | | 2x+1/2+x-1/4=13/2 |